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Abstract. Quantifying greenhouse gas (GHG) emissions is critically important for projecting future climate
and assessing the impact of environmental policy. Estimating GHG emissions using atmospheric observations
is typically done using source–receptor relationships (i.e., “footprints”). Constructing these footprints can be
computationally expensive and is rapidly becoming a computational bottleneck for studying GHG fluxes at high
spatio-temporal resolution using dense observations. Here, we demonstrate a computationally efficient GHG flux
inversion framework using a machine learning emulator for atmospheric transport (FootNet) as a surrogate for
the full-physics model. The footprints generated by FootNet are at approximately 1 km resolution. We update
the architecture of the deep-learning model to improve the performance in a GHG flux inversion. We find that
the posterior fluxes estimated with FootNet footprints are in good agreement with the posterior fluxes estimated
with STILT footprints. We observe that the more simplistic representation of transport in the machine learning
model helps to mitigate transport errors. This flux inversion using a machine learning surrogate model requires
only meteorological data, GHG measurements, and prior fluxes. Constructing footprints using FootNet is 650
times faster than the full-physics atmospheric transport model on similar hardware. This speedup allows for the
computation of footprints “on the fly” during the GHG flux inversion (i.e., computed as needed, rather than
archiving for future use) and makes near-real-time emission monitoring computationally possible. This work
alleviates a major computational bottleneck with inferring GHG fluxes with next-generation dense observing
systems.

1 Introduction

Carbon dioxide (CO2) and methane are the two most pow-
erful greenhouse gases (GHGs). Together, they account for
more than 85 % of the total GHG radiative forcing since
preindustrial times (IPCC, 2023). As such, it is important to
quantify the GHG sources and sinks in order to project future
climate. Near-real-time quantification of GHG emissions is
key to identifying the intermittent super-emitters, which of-
ten dominate the emission budget. However, the large com-
putational and storage costs associated with full-physics at-

mospheric transport models in the current inversion frame-
work limit our ability to perform near-real-time emissions
monitoring from urban to global scales (Roten et al., 2021;
Varon et al., 2023; Cartwright et al., 2023; Fillola et al., 2023;
Nayagam et al., 2023; Steiner et al., 2024; Janardanan et al.,
2024). Here, we use FootNet (He et al., 2025), a compu-
tationally efficient deep-learning model, to emulate a full-
physics atmospheric transport model and conduct GHG flux
inversions. This work shows the feasibility of using a ma-
chine learning (ML) emulator for near-real-time computation
of source–receptor relationships and to infer hourly GHG

Published by Copernicus Publications on behalf of the European Geosciences Union.



5160 N. Dadheech et al.: High-resolution GHG flux inversions using a machine learning transport model

emission fluxes at the kilometer scale from atmospheric ob-
servations.

Previous work has shown the importance of point sources
for methane emissions (e.g., Brandt et al., 2014; Zavala-
Araiza et al., 2015; Frankenberg et al., 2016; Duren et al.,
2019; Lauvaux et al., 2022; Chen et al., 2022; Cusworth
et al., 2022; Sherwin et al., 2023; He et al., 2024) and ur-
ban and localized sources for CO2 (e.g., Hutyra et al., 2014;
Janardanan et al., 2016; Turner et al., 2020; Wu et al., 2020;
Kiel et al., 2021). These sources represent a small geograph-
ical area and yet dominate the GHG emission budget. The
emission fluxes from these “super emitters” are often ob-
served to have a heavy-tailed distribution (Brandt et al., 2014;
Zavala-Araiza et al., 2015; Frankenberg et al., 2016; Duren
et al., 2019; Chen et al., 2022; Cusworth et al., 2022). In other
words, a small number of point sources are responsible for a
large fraction of the total emission budget, despite represent-
ing a small fraction of the land area. As such, studying these
point sources requires densely spaced measurements due to
their localized nature. Fortunately, there has been a prolifer-
ation of next-generation, dense observing systems for GHGs
over the past decade, including both spaceborne instruments,
e.g., OCO-2 (O’Dell et al., 2012; Crisp et al., 2012; Elder-
ing et al., 2012; Hammerling et al., 2012), OCO-3 (Eldering
et al., 2019; Taylor et al., 2020), and TROPOMI (Veefkind
et al., 2012), and low-cost urban monitoring networks (e.g.,
BEACO2N: Shusterman et al., 2016).

Measurements from dense observing systems can be used
to quantify surface fluxes. The inverse modeling of GHG
emissions often requires one to know the upwind region of
influence on the atmospheric measurements. This region of
influence is also known as the “source–receptor relationship”
or the measurement “footprint” (see Rodgers, 2000). The
ith observation (yi) can be related to the m surface fluxes
using the associated footprint:

yi = hix+ bi, (1)

where hi is the 1×m footprint for the ith observation, x is an
m×1 vector of surface fluxes, and bi is the background con-
centration for the observation. Here, hi describes the sensi-
tivity of observation yi to m surface fluxes with units similar
to ppm(µmolm−2 s−1)−1. Similarly, the vector of the n ob-
servations (y; n× 1) can be related to the surface fluxes as

y =Hx+ b, (2)

where b is n× 1 vector of background concentrations, and
H is an n×m Jacobian matrix representing the atmospheric
transport, such that the ith row of H describes the sensitivity
of the ith observation (yi) to the m surface fluxes.

Researchers construct this source–receptor relation-
ship (H) by running a Lagrangian model n times or an Eu-
lerian model m times. The choice of construction of H will
depend on the size of both n andm. There are approximately
800 observations and 15 million state vector elements in

each inversion run for this study. Therefore, constructing H
will require approximately 800 simulations in the Lagrangian
framework or around 15 million simulations in the Eulerian
framework. The Eulerian models are not grid agnostic, and
the corresponding computational expense increases as the
spatial resolution increases (Steiner et al., 2024). For exam-
ple, the Integrated Methane Inversion (IMI) is an Eulerian-
based framework focusing on the regional scale but is limited
to 25 km at present (Varon et al., 2022). Variational methods
such as 4D-Var can be used with large state and observation
spaces. However, it requires computing an adjoint, which is
a computationally expensive process. Additionally, this pro-
cess iteratively minimizes the cost function with many for-
ward runs and, as such, can not be parallelized. The compu-
tation cost of 4D-Var is independent of the number of ob-
servations but can still be very large. It also requires storing
many checkpoint files, which can become very large for high
spatial resolution and can have high storage costs. Gaussian
plume models are known for their simplicity and are often
used for point source modeling (Bovensmann et al., 2010;
Nassar et al., 2017; Wang et al., 2020). However, these mod-
els typically assume favorable conditions such as constant
winds and flat topography, which may not always be the case.

Here, we focus on constructing the source–receptor rela-
tionship using a full-physics Lagrangian particle dispersion
model (LPDM). As such, this requires constructing n foot-
prints, i.e., one footprint for each measurement.

The LPDM can be used to construct a footprint by ad-
vecting an ensemble of particles backwards in time from
the measurement sites using archived meteorology (e.g., Lin
et al., 2003). These Lagrangian trajectories are agnostic to
the choice of grid and can be easily mapped to a high spatial
resolution. Additionally, for this study, n is small as com-
pared to m, and, therefore, it is computationally efficient to
use the Lagrangian method of constructing H.

The computation of footprints from a full-physics LPDM
is an embarrassingly parallel problem and, as such, can easily
be parallelized. However, this does not overcome the sheer
volume of data that would need to be generated for a high-
resolution GHG flux inversion. The construction of foot-
prints can quickly become computationally intractable as the
number of measurements increases, as is the case with dense
observing systems.

In addition to the computational cost of constructing foot-
prints described above, there is a storage cost associated with
these footprints that increases with the number of measure-
ments. This can also become burdensome as the number of
observations increases. As an example, Turner et al. (2018)
examined point sources in the Barnett Shale region in Texas
and found that generating 1 week of footprints for hourly
measurements made by a geostationary satellite instrument
required more than 15 million simulations to construct the
footprints and over 4 TB to store them. This region repre-
sents less than 1 % of the United States. As such, many pre-
vious studies investigating point sources have focused on a
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subset of cases with favorable atmospheric conditions, allow-
ing them to utilize a simplified representation of atmospheric
transport. For example, recent work estimated CO2 emis-
sions from individual power plants using a Gaussian plume
(e.g., Nassar et al., 2017, 2021; Guo et al., 2023), which is
only valid for steady winds.

Recent work have explored the potential of machine learn-
ing and other analytical methods to address computational
bottlenecks when working with LPDMs. For example, Roten
et al. (2021) developed an interpolation method using non-
linear weighted averaging to compute footprints. Cartwright
et al. (2023) developed a convolution-based variational au-
toencoder, which predicts footprints using a spatio-temporal
Gaussian emulator. Brecht et al. (2023) used neural networks
for super-resolution to improve trajectory calculations with
the FLEXible PARTicle dispersion model (FLEXPART). Fil-
lola et al. (2023) developed an emulator using gradient-
boosted regression trees to predict the influence for each
grid, one at a time. These studies provide a proof-of-concept
for emulating full-physics LPDM. However, they still re-
quire running the full-physics LPDM simulations a signifi-
cant number of times to conduct flux inversions. Fillola et al.
(2023) developed a stand-alone emulator that can predict the
near field of the footprints at approximately 35 km× 23 km
resolution. However, they had to use LPDM simulations for
the far field while using the emulator in an inversion frame-
work. Hence, these proof-of-concept studies are not entirely
independent of LPDM simulations in an inversion frame-
work. Additionally, their spatial resolutions are very coarse,
which is not ideal for high-resolution emission inventories.

Here we use FootNet, a computationally efficient deep-
learning model that emulates the atmospheric transport (He
et al., 2025), to conduct GHG flux inversion at the kilome-
ter scale. FootNet is a deep-learning model based on a U-Net
architecture and trained on outputs from the Stochastic Time-
Inverted Lagrangian Transport model (STILT; Lin et al.,
2003). FootNet computes footprints at 1 km× 1 km resolu-
tion and is independent of the parent LPDM after the training
process. As such, FootNet can be readily used in GHG flux
inversions and, once trained, does not require STILT model
outputs to predict the footprint. Here, we evaluate the per-
formance of FootNet in GHG flux inversion using the San
Francisco Bay Area in northern California as a case study.

2 Impacts of COVID-19 regulations on urban
CO2 fluxes in the San Francisco Bay Area as a
case study

This study focuses on the San Francisco Bay Area in north-
ern California. We use hourly atmospheric CO2 measure-
ments from the Berkeley Environmental Air Quality and
CO2 Network (BEACO2N; Shusterman et al., 2016; Turner
et al., 2016; Shusterman et al., 2018; Turner et al., 2020;
Asimow et al., 2024). BEACO2N is a dense urban moni-

toring network with monitoring sites spaced approximately
2 km apart. This study uses hourly CO2 measurements for
the period of 2 February 2020 to 2 May 2020. Measurements
are from approximately 35 BEACO2N sites. These observa-
tions were used in a recent study from Turner et al. (2020),
who evaluated the impact of COVID-19 restrictions on urban
CO2 fluxes. This high-resolution GHG flux inversion from
Turner et al. (2020) will serve as a reference study to evalu-
ate the performance of flux inversions using an ML model as
a surrogate for the full atmospheric transport model.

As in Turner et al. (2020) and He et al. (2025), we use me-
teorological fields from the High-Resolution Rapid Refresh
(HRRR) model at 3 km× 3 km spatial resolution to drive the
STILT LPDM. Footprints from the STILT LPDM are then
used as training data for FootNet (see He et al., 2025, for de-
tails). The training data are sampled from 2018 to 2019, as
such, the timeline of this case study is not involved in the
training data. FootNet predicts footprints at 1 km× 1 km res-
olution over a 400 km× 400 km spatial region centered on
the San Francisco Bay Area. The setup for the CO2 flux in-
version is the same as in Turner et al. (2020). As such, we can
compare the performance of the GHG flux inversion from
FootNet with previously published work. Differences from
the setup in Turner et al. (2020) will be emphasized in the
text that follows.

3 Inferring CO2 fluxes at high spatio-temporal
resolution from atmospheric observations

Our goal in this work is to infer the fluxes of CO2 using
atmospheric observations. Bayesian inference is commonly
used when estimating CO2 fluxes using atmospheric obser-
vations. Building on the framework described in Sect. 1, we
use Bayesian inference to relate the probability density func-
tion (PDF) of the posterior (P (x|y)) to the observation like-
lihood PDF (P (y|x)) and prior PDF (P (x)) as follows:

P (x|y)∝ P (y|x)P (x). (3)

Assuming a normal distribution for both P (y|x) and
P (x) yields a closed-form solution for the posterior distri-
bution:

P (x|y)∝ exp
[
−

1
2

(y−Hx)TR−1(y−Hx)

−
1
2

(x− xa)TB−1(x− xa)
]
, (4)

where xa is the prior, R is the observational error covariance
matrix, and B is the prior error covariance matrix. The max-
imum a posteriori probability can be obtained by finding the
minimum of the negative log-likelihood term within the ex-
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ponential. The resultant cost function is

J (x)=
1
2

(y−Hx)TR−1(y−Hx)

+
1
2

(x− xa)TB−1(x− xa). (5)

Minimizing the cost function provides a closed-form esti-
mate for the posterior fluxes (x̂):

x̂ = xa + (HB)T(HBHT
+R)−1(y−Hxa), (6)

where x̂ is the posterior fluxes. It is important to note here
that B is an m×m matrix that is often computationally in-
tractable for large state vectors. In this case study,m is larger
than 15 million, and B is computationally intractable. We
use a Kroenecker product to decompose B into temporal and
spatial submatrices. Yadav and Michalak (2013) proposed
a computationally efficient algorithm for serial computation
of HB and HBHT using this Kroenecker product without ex-
plicitly forming B. We further reduce the computation time
of HB computation by updating their algorithm to implement
parallel computation (see Appendix A).

4 Relating observations to surface fluxes using
footprints

This study uses footprints generated by both STILT and
FootNet to relate surface fluxes to observations. Both of
these models are driven by the same parent HRRR meteo-
rology. STILT is a Lagrangian model built on top of the Hy-
brid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model and can produce either time-resolved (e.g.,
hourly) footprints or time-integrated footprints (i.e., the tem-
poral dimension has been summed, yielding a 2-D matrix).
STILT footprints generated for this study are hourly, going
72 h backwards in time or until the trajectories leave the spa-
tial domain (whichever is shorter). This is the same setup
that was used in Turner et al. (2020). The FootNet model
computes time-integrated footprints because it was deemed
computationally infeasible to emulate the time-resolved foot-
prints. Therefore, we need to devise an approach to allocate
the FootNet footprints backwards in time. Here, we use ex-
ponentially decaying weights to allocate the footprint across
all 72 back hours. These weights are normalized such that the
summation of the weights adds up to 1 and conserves the total
magnitude of the footprint. This section compares the tem-
poral allocation using exponential decay on time-integrated
STILT footprints with the hourly time-resolved STILT foot-
prints in a GHG flux inversion to investigate the additional er-
ror induced before using it with FootNet footprints in Sect. 5.

Figure 1 shows the difference between hourly time-
resolved footprints and the time-integrated footprints with
exponentially decayed weights. The time-resolved footprints
have a smaller sensitivity “blob” that moves as we go back-
ward in time. This indicates that, for any given time step, only

the emission sources in the small shaded region influence our
observation. This highly time-resolved method assumes that
the numerical schemes used for the transport and advection
are highly accurate. In contrast, the time-integrated footprint
with exponentially decayed weights assumes a time-invariant
spatial structure with decreasing magnitude at previous time
steps. This plume decays with time such that time steps close
to the time of observation have higher weights as compared
to the plume 72 h before the time of observation, which has
negligible influence. This temporal allocation of the footprint
will likely induce additional error.

We assess this error using a pair of flux inversions: (1) con-
duct a GHG flux inversion with time-resolved STILT foot-
prints, and (2) conduct a second GHG flux inversion us-
ing STILT footprints where the footprints have been time-
integrated and temporally allocated as described above. This
pair of GHG flux inversions will isolate the impact of this
temporal allocation. Please note that all other inversion pa-
rameters are the same between these tests.

Figure 2 shows the results of these two GHG flux in-
versions in the Bay Area. It is important to emphasize that
both of the inversions use the same set of footprints derived
from the STILT model. The only difference is that one set of
STILT footprints has been time-integrated and then reallo-
cated temporally using exponential decay. The scatter plots
compare observed CO2 concentrations with the simulated
CO2 concentrations using prior and posterior fluxes on a val-
idation dataset that was not used in the flux inversion. We
use the same seed such that same validation concentrations
are sampled in both cases. Overall, the posterior emission
fluxes are in agreement. Interestingly, the second case, where
the footprints have been temporally reallocated, does a bet-
ter job at simulating independent observations with both the
prior fluxes and the posterior fluxes. This can be seen in both
the correlation and the mean squared error. Upon close ex-
amination of the scatter plots, it can be seen that the time-
resolved scatter plots have a cluster of simulated concen-
trations around 410 ppm (approximately background signal),
even though actual concentrations are higher than that. This
pattern is visible in the CO2 concentrations simulated using
both prior and posterior fluxes. On the other hand, this pat-
tern is not visible in the CO2 concentrations simulated using
the posterior fluxes of the exponential decay case.

The poor performance of the time-resolved footprints is
likely driven by transport errors in the STILT simulations.
The time-resolved footprints are a more realistic represen-
tation of the source–receptor relationship, but not necessar-
ily more accurate. The simulated transport could have large
biases that will propagate into time-resolved footprints. For
example, errors in the wind speed could lead to parcels ad-
vecting too fast and attributing fluxes to the wrong spatial
location. In these flux inversions, the ocean and the San Fran-
cisco Bay are assumed to be neither sources nor sinks. It
seems that the sensitivity blobs in the time-resolved foot-
prints are quickly advected over the ocean, and hence the
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Figure 1. Two methods of representing temporal patterns in footprints for a single receptor. The green stars indicate the receptor location
for the footprint. Panels (a) – (c) show the time-resolved footprints computed directly from STILT. Panels (d) – (f) show the time-integrated
STILT footprints with the pattern allocated temporally using an exponential decay. Both representations have the same time-integrated spatial
pattern (panel g).

simulated concentrations are closer to the background sig-
nal, even though the observed concentrations are higher. As
such, the time-integrated footprints may be mitigating these
transport errors and allowing GHG fluxes to be attributed
correctly. Additionally, this pair of GHG flux inversions in-
dicates that the exponential-decay-based temporal allocation
of footprints should not induce significant errors in the GHG
flux inversion. All of the GHG flux inversion experiments
that follow (i.e., Sect. 5) will use FootNet footprints and this
temporal allocation of the footprints.

5 GHG flux inversions with a machine learning
surrogate model

Using the temporal allocation strategy described above, we
can now assess the performance of an ML-based surrogate
transport model within a GHG flux inversion. Figure 3 shows
conceptually how this ML model for atmospheric transport
can be used within a GHG flux inversion. Figure 3a shows
the conventional GHG inversion framework using an LPDM.
This framework begins with obtaining meteorological data
for the spatio-temporal region of interest. These meteorolog-
ical data are used to drive the full-physics LPDM and, in turn,
construct the footprints for all of the observations. Construc-

tion of these footprints is computationally expensive, and the
footprints are typically archived prior to conducting the GHG
flux inversion. Archiving these footprints can have large data
storage requirements for dense observations at high spatio-
temporal resolution. Following the construction and archival
of the footprints, researchers can then estimate GHG fluxes
via Bayesian inference, as described in Sect. 3.

Figure 3b shows the process to estimate GHG fluxes using
an ML model as a surrogate for the full-physics atmospheric
transport model. The initial and final steps of the process are
identical to the process described above. The difference is
in the construction and archival of the footprints. We detail
two approaches: (1) construct and archive the footprints, or
(2) construct the footprints “on the fly” during the GHG flux
inversion. The former approach is similar to the process using
the full-physics model, but the construction of the footprints
uses the ML-based surrogate model (e.g., FootNet). The lat-
ter approach of computing the footprints on the fly during the
inversion is only feasible if the computation of the footprints
can be done in near-real time; otherwise, additional computa-
tional expense would make the inversion prohibitively slow.
The computation of a time-integrated footprint by the ML-
based surrogate model described by He et al. (2025) takes
less than a second and, as such, may be sufficiently fast to
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Figure 2. Comparison between CO2 fluxes derived using time-resolved and time-integrated footprints with exponential decay for the STILT
model. Panels (a)–(d) show flux inversion results using time-resolved footprints from STILT. Panels (e)–(h) show flux inversion results
using time-integrated footprints with an exponential decay. Panels (a) and (e) show the posterior fluxes averaged over the study period from
2 February 2020 to 2 May 2020. Panels (b) and (f) show the difference between the posterior and prior fluxes. Panels (c) and (g) show a
comparison of the model simulated concentrations using the prior fluxes against independent observations withheld from the flux inversion.
Panels (d) and (h) show the same comparison as is panels (c) and (g), but using the posterior fluxes.

Figure 3. Conventional and FootNet-based GHG inversion frameworks. Panel (a) shows the conventional GHG flux inversion framework,
which uses a full-physics LPDM simulation to compute footprints. Panel (b) shows the proposed GHG flux inversion framework using
FootNet model to compute footprints. The arrow in panel (b) indicates how FootNet may be used to compute footprints on the fly as they are
needed within the GHG flux inversion, bypassing the data storage step.
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Figure 4. Urban CO2 flux inversion results in the San Francisco Bay Area using FootNet v1 (He et al., 2025). Panel (a) shows the posterior
CO2 fluxes averaged over the study period. Panel (b) shows the difference between the posterior fluxes inferred with FootNet v1 and fluxes
inferred with a full-physics model (STILT). Panel (c) shows a comparison of CO2 concentrations simulated with FootNet v1 and the prior
fluxes against independent observations. Panel (d) shows the same as in panel (c) but for posterior fluxes inferred from using FootNet v1.
The reference study is Turner et al. (2020).

facilitate computation of footprints on the fly as they are
needed in the GHG flux inversion. In the following sections,
we evaluate the performance and the computational expense
of GHG flux inversion frameworks using FootNet. These re-
sults will be compared to a GHG flux inversion using a full-
physics atmospheric transport model (STILT).

5.1 GHG flux inversion with FootNet v1

Figure 4 shows the results of a flux inversion using Foot-
Net v1, the model described in He et al. (2025), with the
flux inversion setup from Turner et al. (2020), who evaluated
the impact of COVID-19 regulations on urban CO2 fluxes
in the San Francisco Bay Area. Briefly, we conduct hourly
flux inversions at 1 km spatial resolution for overlapping
96 h windows. Each 96 h window includes a 36 h buffer on
the 24 h period of interest. The prior error covariance ma-
trix is decomposed using a Kronecker product (e.g., Yadav
and Michalak, 2013). Upwind concentrations are taken from
NOAA observations in the Pacific and from AmeriFlux mea-
surements in the Sacramento Delta.

From Fig. 4c and d, we observe that the posterior fluxes
inferred using FootNet v1 perform substantially better than
the prior fluxes when compared against independent valida-
tion data. Figure 4a shows changes in physically meaningful
locations, such as freeways in the San Francisco Bay Area, as
well as regions dominated by the biosphere. However, from
Fig. 4b, we can see that these posterior fluxes do not appear
to be in agreement with the fluxes inferred from Turner et al.
(2020) using the full-physics model. FootNet v1 finds sub-
stantially higher fluxes throughout the domain than the inver-
sion using the full-physics model. This suggests that Foot-
Net v1 simulates realistic spatial patterns well but may be
generating weaker footprints than STILT and may not be ap-
propriately scaled. Additionally, the large differences in the

far field seen in Fig. 4b indicate that there could be an im-
balance between the near field and far field of the footprints
from FootNet v1.

Figure 5 shows the cumulative influence of footprints for
the full-physics model (STILT) and FootNet v1. These cumu-
lative influence plots give an idea of the spatial regions that
the observations are sensitive to. As alluded to above, there
are strong similarities in the spatial patterns, but FootNet v1
does indeed find a larger contribution from distant regions
than STILT. This larger region of influence would result in
FootNet allocating larger fluxes to distant regions than a flux
inversion using STILT. This comparison of the regions of in-
fluence suggests that the FootNet model should be updated
to improve the performance within a GHG flux inversion. We
hypothesize two methods for improving the performance of
FootNet: (1) changing parameters in the deep-learning archi-
tecture for FootNet and (2) adding input features to FootNet.

5.2 Updating the FootNet model to improve
performance in flux inversions

As a first test, we train an additional variant of the FootNet
model with an alternate formulation of the cost function (i.e.,
the cost function used to construct FootNet, not the cost func-
tion for a GHG flux inversion). This FootNet variant still re-
lies on the underlying U-Net architecture. The FootNet v1
model used a mean-squared error (MSE; i.e., L2-norm) cost
function in the gradient descent optimization. We hypothe-
size that an L1-norm cost function may improve the balance
between the near field and the far field. This is because the
MSE cost function is sensitive to outliers, in contrast to an
L1-norm that is less sensitive to outliers (see Bishop, 2006).

Figure 6a and b show the cumulative influence for Foot-
Net v1 using both an MSE and L1 norm cost function. Both
formulations of the cost function yield large spatial regions
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Figure 5. Cumulative region of influence for the BEACO2N network in the San Francisco Bay Area. Panel (a) shows the cumulative
influence computed using STILT, a full-physics model. Panel (b) shows the cumulative influence computed using FootNet v1 with an MSE
cost function. The white contour represents the region encapsulating the top 40 % of the total influence on the BEACO2N network (i.e., the
region to which the observations are most sensitive).

Figure 6. Same as Fig. 5 but for different variants of FootNet. Panels (a) and (b) show the cumulative influence for FootNet v1. Panels
(c) and (d) show the cumulative influence for FootNet v2. Panels (a) and (c) use MSE cost functions. Panels (b) and (d) use L1-norm cost
functions.

of influence. Based on this, we conclude that changing the
cost function alone is insufficient to rectify the imbalance in
the near-field and far-field footprints.

Two other FootNet model parameters we evaluate are the
choice of activation function and the formulation of a log-
transformation of the training data. The construction of Foot-
Net v1 uses the rectified linear unit (ReLU) activation func-
tions to introduce nonlinearity in the deep-learning model ar-
chitecture (He et al., 2025). We assess the performance of

parametric rectified linear unit (PReLU) activation functions.
These PReLU activation functions have parameters that can
be tuned during the training process, giving FootNet addi-
tional degrees of freedom. FootNet v1 also uses a logarithmic
transformation of the training data to help identify large-scale
spatial patterns. We modify the logarithmic transformation to
add a small number and ensure positivity, as follows:

0(x∗)= log(x+ ε)− log(ε), (7)
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where x is a real number and ε is a small value (ε = 10−3).
Both of these updated parameter choices improved the per-
formance of FootNet but did not fully rectify the near-field
and far-field imbalance.

Finally, we trained two more FootNet models using ad-
ditional input features shown in Table 1. We define these
models with additional input features as “FootNet v2”.
FootNet v1 only uses meteorological data at the time of
measurement and 6 h prior. Here, we add meteorological
data 12 h back in time. These meteorological data include
10 m zonal and meridional winds, surface pressure, and plan-
etary boundary layer (PBL) height. Winds are important for
the model to learn advection, and surface pressure also acts
as a proxy for the region’s topography. We also use PBL
height, as it is an important input for computing footprints
from the trajectories of the particles in a full-physics LPDM
(e.g., STILT; Lin et al., 2003). The choice of 12 h is because
many trajectories have not yet left the domain within 6 h, and,
as such, meteorological information from 12 h before the ob-
servation time may be important in constructing the footprint
and assessing fluxes. We also include distance from the re-
ceptor (both linear distance and an exponentially decaying
distance). Distance from the receptor may help the model
learn the optimal decay rate for the spatial pattern of the foot-
print (i.e., help the imbalance of the near field and far field).
Finally, we include a spatial mask inferred from a network
of Gaussian plumes. The spatial mask is based on winds at
the time of measurement, 6, 12, 18, and 24 h back in time
and may help identify the important regions influencing our
measurement.

Figure 6 shows the cumulative influence plots for Foot-
Net v2 using both MSE and L1-norm cost functions. The
60th percentile contours show a stronger resemblance to that
of the full-physics STILT model (see Fig. 5a). The balance
between the near field and far field is more in line with
the cumulative influence inferred by the STILT model. As
hypothesized, the model with the MSE cost function has a
larger region of influence than the model using the L1-norm
cost function. This allows the model to optimize the spatial
decay structure of the footprints as it moves radially out-
ward from the receptor location. Notably, the MSE-based
cost function indicates a larger sensitivity over the ocean as
compared to the STILT footprint and the L1-norm. This is
likely due to FootNet simulating “smoother” footprints than
STILT (STILT exhibits sharp gradients at the edge of the
footprint). The FootNet v2 model using an L1-norm cost ex-
hibits a smaller region of influence than the STILT model.

We can now assess the performance of the four models
shown in Fig. 6 in the context of realistic GHG flux in-
versions. In all cases, the models will be compared against
the results of GHG flux inversion using the full-physics
STILT model (Turner et al., 2020), and they will be evalu-
ated against validation data from CO2 observations withheld
from the flux inversion.

Figure 7 shows the comparison of these models against
Turner et al. (2020) and the validation data (note, one of the
cases is shown above in Fig. 4). As shown in Fig. 6, the near-
field and far-field imbalance persists in FootNet v1 using an
L1-norm cost function. Both variants of FootNet v2 show
marked improvement in the near-field and far-field balance.
Additionally, both variants of FootNet v2 perform substan-
tially better against independent validation data (see right
column). Between the two variants of FootNet v2, we find
that the mean squared error (MSE)-based cost function per-
forms best. This conclusion is based on the performance
against independent validation data and comparison to the
posterior fluxes from Turner et al. (2020). The comparison
against independent validation shows a strong correlation
(r = 0.68) and no systematic biases in the residuals. The
mean squared error against independent validation data is
the lowest of the FootNet models tested (MSE= 405 ppm2).
FootNet v2 with an MSE cost function also shows the small-
est deviations from the posterior fluxes inferred from Turner
et al. (2020), who used a computationally expensive full-
physics model to relate the fluxes to observations. As such,
we select FootNet v2 with an MSE cost function as the final
model.

Figure 8 shows a direct comparison of FootNet v2 using
an MSE cost function against the posterior fluxes inferred
from Turner et al. (2020) using a full-physics model (STILT).
The comparison shows the average fluxes for 6 weeks before
COVID-19 shelter-in-place orders, 6 weeks during shelter-
in-place orders, the difference, and a comparison against in-
dependent validation data. Figure 8a and e show a strong sim-
ilarity in their CO2 fluxes before the COVID-19 shelters were
in place. We note some disagreements in the far field, such as
the northern and eastern parts of the domain. Figure 8b and f
correspond to the period during the shelter-in-place measures
that decreased anthropogenic emissions. Both sets of poste-
rior fluxes are in agreement during this period, with clearly
visible reductions in emissions from freeways and anthro-
pogenic sources. The only notable difference is near Toma-
les Bay and Point Reyes, in the western portion of the do-
main. Figure 8c and g show the difference in the CO2 fluxes
between these two periods. Both inversions largely agree in
the Bay Area, where the observations have the largest influ-
ence. Some disagreements can be seen to the east of Tomales
Bay and in the Sacramento Delta. Finally, the right column of
Fig. 8 shows the comparison against independent validation
data for both flux inversions. Interestingly, we observe the
FootNet v2 posterior fluxes to perform better than the poste-
rior fluxes inferred using STILT. This is seen in both the cor-
relation coefficient (r = 0.68 for FootNet and r = 0.65 for
STILT) and mean squared error (MSE= 405 ppm2 for Foot-
Net and MSE= 493 ppm2 for STILT). This begs the ques-
tion: “why would a machine learning surrogate model per-
form better than the full-physics model in a GHG flux inver-
sion?”
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Table 1. Input features for FootNet.

Features FootNet v1 FootNet v2

U10M (ms−1) X X

V10M (ms−1) X X
PBL height (m) X X
Surface pressure (hPa) X X
Gaussian plume at the time of measurement X X
Gaussian plume 6 h before measurement X
Meteorology (U10, V10, PBL, Sfc Pres.) at the time of measurement X X
Meteorology (U10, V10, PBL, Sfc Pres.) 6 h before measurement X X
Meteorology (U10, V10, PBL, Sfc Pres.) 12 h before measurement X
Distance from the receptor (m) X
Combined Gaussian plumes network (mask) X

Figure 7. Same as Fig. 5 but for three other variants of FootNet: FootNet v1 trained with an L1-norm cost function (a–d), FootNet v2 trained
with an MSE cost function (e–h), and FootNet v2 trained with an L1-norm cost function (i–l). The reference study is Turner et al. (2020).
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Figure 8. Urban CO2 fluxes in the San Francisco Bay area inferred using atmospheric observations. Panels (a)–(d) show the posterior
CO2 fluxes inferred using footprints from STILT, a full-physics transport model. Panels (e)–(h) show the posterior CO2 fluxes inferred using
FootNet v2 with an MSE cost function. Panels (a) and (e) show the CO2 fluxes averaged over 6 weeks before the COVID-19 shelter-in-
place orders. Panels (b) and (f) show the CO2 fluxes averaged over 6 weeks during the COVID-19 shelter-in-place order. Panels (c) and
(g) show the difference between these time periods. Panels (d) and (h) compare predicted CO2 concentrations using the posterior fluxes
with independent CO2 observations withheld from the flux inversion. Note that both inversions use time-integrated footprints that have been
temporally allocated based on an exponentially decaying weight.

FootNet was designed to emulate the STILT model (a full-
physics atmospheric transport model); as such, it is surpris-
ing to see the ML-based surrogate model outperform the
full-physics model it was trained on when used in a GHG
flux inversion. The explanation for this paradox is that, while
STILT is a more realistic representation of the transport it is
not necessarily more accurate. ML models often give predic-
tions that tend toward the mean. In the context of atmospheric
transport and footprints, this results in a FootNet simulating
a smoother and more diffuse spatial pattern than STILT (He
et al., 2025). When used in a GHG flux inversion, the sharp
gradients simulated with STILT mean that small errors in
wind speed or direction could lead to fluxes being allocated
to the incorrect spatial location. In the context of the GHG
flux inversion, this diffuse spatial pattern simulated by Foot-
Net can potentially mitigate transport errors in the flux in-
version. An important takeaway from this work is that using
an ML-based surrogate model in a flux inversion can poten-
tially outperform the computationally expensive full-physics
model. However, this result is unlikely to be universally true,
as there will be cases where smoother spatial patterns induce
errors in the flux inversion (e.g., when the true trajectories
are localized). The performance of the ML-based surrogate
model will almost certainly vary on a region-by-region ba-
sis, and additional tests are needed to assess the extent of this
finding.

6 Computational cost of the GHG flux inversions

Table 2 shows the computational and storage cost analysis
for both STILT and FootNet v2 for the 3-month study pe-
riod. The construction of footprints for all of the measure-
ments using the full-physics-based STILT model is compu-
tationally expensive. It takes roughly an hour (upper bound)
to construct a single footprint using STILT. As such, it can
take more than 8 years to construct all the footprints required
for this study if one were to construct them sequentially. Par-
allel computation of the footprints on a 32-core machine can
reduce the time to 3 months. Using multiple nodes can fur-
ther reduce the time to a few days. However, this reduction
in time comes with an infrastructure cost. Given the compu-
tational expense in generating these footprints, researchers
typically store these time-resolved footprints, which can take
approximately 470 GB of space for this study period.

The computation of footprints using FootNet v2 is fast.
It takes 3.5 h to compute the same footprints using a sin-
gle NVIDIA A2 GPU card on 1 core and 24 h using a 32-
core machine; this is a 650× and 85× speedup on simi-
lar hardware, respectively. This time includes reading input
data, constructing footprints, and writing to disk. He et al.
(2025) mention that it takes 0.08 s to compute a single foot-
print after loading input data. This speedy computation from
FootNet allows for near-real-time construction of footprints
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Table 2. Construction and storage cost to compute footprints with STILT and FootNeta.

STILT FootNet

Serial Parallel Parallel (multi-node) CPU GPU (archivalb) GPU (on the flyc)

1 cored 32 coresd 320 coresd 32 coresd 1 GPUe 1 GPUe

Constructionf 8.4 years 3.15 months 10 d 1.1 d 3.5 h up to 3 ming

Storage 467 GB 467 GB 467 GB 45 GB 45 GB 0 GBh

a Computation times may change slightly based on factors such as hardware usage and resource availability. b Flux inversion using archived footprints.
c Footprints computed as they are needed during the flux inversion. d Intel® Xeon® Gold 6226R CPU @ 2.90 GHz. e NVIDIA A2 GPU, 16 GB GDDR6.
f Constructing 73 703 footprints. g

∼ 800 observations for a 1-day inversion with a 96 h window. h No archival of footprints in the on-the-fly framework.

within the GHG flux inversion. In other words, one can com-
pute footprints on the fly as they are needed, rather than stor-
ing the footprints on the disk. Additionally, it may allow re-
searchers to conduct sensitivity runs on meteorological pa-
rameters (e.g., the PBL height) during the flux inversion by
including meteorological parameters as a hyperparameter in
the inversion. We note that the storage cost is lower for Foot-
Net because STILT is saving time-resolved footprints.

The serial computation of the HB matrix, based on the
computationally efficient algorithm proposed by Yadav and
Michalak (2013), can also become computationally expen-
sive. In this study, we implemented a parallel computation
of HB matrix based on the algorithm detailed in Yadav and
Michalak (2013). This parallel implementation is approxi-
mately 27 times faster than the serial implementation. Ap-
pendix A discusses the parallel implementation of HB matrix
computation.

7 Conclusions

Near-real-time quantification of greenhouse gas (GHG)
fluxes is important for monitoring, reporting, and verifica-
tion of GHG fluxes to ensure climate goals are met. Here
we demonstrate how machine learning (ML) models can be
used as a surrogate for the full-physics atmospheric transport
models in a GHG flux inversion, alleviating a computational
bottleneck. This work updates the deep-learning architecture
of FootNet v1 (He et al., 2025) to improve the performance
in a GHG flux inversion. This updated deep-learning model
for atmospheric transport (FootNet v2) outperforms the full-
physics model in an inversion estimating urban CO2 fluxes
at high spatio-temporal resolution in the San Francisco Bay
Area. Further tests are required to investigate the generaliz-
ability of this finding.

A potential barrier to using FootNet within a GHG flux
inversion is that FootNet computes a 2-D spatial pattern of
time-integrated footprints, whereas the full-physics model
(STILT) generates time-resolved footprints. To overcome
this, we temporally allocate the footprints using an expo-
nentially decaying weight such that there is a time-invariant
spatial structure with decreasing magnitude at previous time

steps. Further, we compare predicted concentrations after
conducting flux inversion using both the time-resolved and
time-integrated footprints with temporal allocation. We ob-
serve that time-integrated footprints perform better, as they
can mitigate transport errors in the time-resolved represen-
tation. The time-resolved footprints are a more realistic rep-
resentation of the source–receptor relationship, but not nec-
essarily more accurate. Additional tests are needed to under-
stand the transport errors in the time-resolved footprint and
the broader applicability of the exponential-decay footprints.
This overcomes a potential barrier to using the ML-based
surrogate model in a flux inversion.

A preliminary flux inversion using FootNet v1 suggested
there was a bias in the balance between the near-field and
far-field footprints. We constructed additional variants of the
FootNet model and evaluated them in an urban CO2 flux in-
version. Performance was evaluated against independent ob-
servations that were withheld from the flux inversion. Ul-
timately, we developed a new model (FootNet v2) that in-
cludes additional input features. We find that FootNet v2
outperforms the full-physics model in the flux inversion in
this particular study. This is likely because the FootNet v2
footprints have a smoother spatial structure than the full-
physics model. This smoother spatial structure can help miti-
gate transport errors. Additionally, this machine learning sur-
rogate model allows for a 650× speedup in the construction
of the footprints as compared to the full-physics model. This
speedup allows for on-the-fly computation of footprints dur-
ing the inversion, as opposed to archiving footprints prior to
the GHG flux inversion.

Previous work has shown that the distribution of GHG
sources may be skewed, with a “heavy tail” of super emit-
ters. This suggests that the assumption of a Gaussian distri-
bution for the prior PDFs may not be accurate. Stochastic
methods such as Markov chain Monte Carlo can allow one to
specify non-Gaussian prior PDFs, as well as jointly solve for
meteorology (e.g., uncertainties in PBL height). However, it
is currently infeasible to implement with traditional models,
as it requires evaluation of the forward model many times,
which is computationally intractable. FootNet can compute
the footprints in near real time, making it feasible to use

Atmos. Chem. Phys., 25, 5159–5174, 2025 https://doi.org/10.5194/acp-25-5159-2025



N. Dadheech et al.: High-resolution GHG flux inversions using a machine learning transport model 5171

these methods to estimate posterior emissions. This can be
one potential application of machine learning surrogates of
atmospheric transport in improving the flux estimates.

Overall, FootNet alleviates a computational bottleneck
when working with dense GHG observing systems, such as
those from urban monitoring networks and next-generation
satellite measurements (e.g, MethaneSat and Carbon-I). The
computational efficiency of FootNet allows for near-real-
time emission monitoring of GHGs, along with other non-
reactive trace gases. This work demonstrated the utility of
FootNet in quantifying urban CO2 fluxes in a case study, and
future work is needed to extend this framework to a larger
region, such as the contiguous US, or total column mea-
surements. Nevertheless, ML-based surrogate models such
as FootNet represent a promising direction for efficiently in-
terpreting the growing volume of observational data from
next-generation observing systems.

Appendix A: Parallel implementation of HB matrix
multiplication

Here, we use a shared-memory parallelization technique to
compute HB from Hn×pr, the temporal prior error covari-
ance matrix (Dp×q ), and the spatial prior error covariance
matrix (Er×t ). This method is similar to the algorithm de-
scribed in Yadav and Michalak (2013). The primary differ-
ence from Yadav and Michalak (2013) is that we form HB in
shared memory and use a multi-threading approach to iterate
over the q columns of D simultaneously, such that a thread
performs the following operation on the kth column of D:

1. Multiply each (n× r) block of H by the elements of the
kth column of D and add these blocks.

2. Multiply the resulting n×r matrix by Er×t to obtain the
kth n× t column block of HB matrix.

3. Update the kth n× t column block of HB matrix.

4. End the thread operation.

This method is limited by the number of threads and the
memory available for the matrix multiplication. The larger
the number of threads, the faster the multiplication can be,
provided that there is enough memory available for each
thread.
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berkeley.edu/Sites.aspx (Cohen Research, 2025). The FootNet
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