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g r a p h i c a l a b s t r a c t
� Site-specific models with meteo-
rology have better performance over
the indicative city level model.

� Lower degrees of polynomial trans-
formation on pollutant prediction
show smaller error.

� Hourly averaged observations are
well-suited for the prediction of NO,
NO2 and O3.

� Random forest regression approach
produces better models than linear
regression for O3.

� O3 prediction shows the highest
dependence on solar radiation, NO2,

wind speed and NO respectively.
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a b s t r a c t

Modelling photochemical pollutants, such as ground level ozone (O3), nitric oxide (NO) and nitrogen
dioxide (NO2), in urban terrain was proven to be cardinal, chronophagous and complex. We built linear
regression and random forest regression models using 4-years (2015e2018; hourly-averaged) observa-
tions for forecasting O3, NO and NO2 levels for two scenarios (1-month prediction (for January 2019) and
1-year prediction (for 2019)) d with and without the impact of meteorology. These flexible models have
been developed for, both, localised (site-specific models) and combined (indicative of city-level) cases. Both
models were aided with machine learning, to reduce their time-intensity compared to models built over
high-performance computing. O3 prediction performance of linear regression model at the city level,
under both cases of meteorological consideration, was found to be significantly poor. However, the site-
specific model with meteorology performed satisfactorily (r ¼ 0.87; RK Puram site). Further, during
testing, linear regression models (site-specific and combined) for NO and NO2 with meteorology, show a
slight improvement in their prediction accuracies when compared to the corresponding equivalent linear
models without meteorology. Random forest regression with meteorology performed satisfactorily for
indicative city-level NO (r ¼ 0.90), NO2 (r ¼ 0.89) and O3 (r ¼ 0.85). In both regression techniques,
increased uncertainty in modelling O3 is attributed to it being a secondary pollutant, non-linear
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dependency on NOx, VOCs, CO, radicals, and micro-climatic meteorological parameters. Analysis of
importance among various precursors and meteorology have also been computed. The study holistically
concludes that site-specific models with meteorology perform satisfactorily for both linear regression
and random forest regression.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Photochemical air pollution is a challenge to most of the
developing countries of the 21st century (Ghude et al., 2016). It
affects human well-being, ecology, infrastructure as well as agri-
cultural systems (Gurjar et al., 2016). Ground level ozone (O3) is a
photochemical pollutant of paramount importance and has been
ranked 33rd in the global ranking of health risk factors for total
deaths from all causes (Faridi et al., 2018). Among the criterion
pollutants, experienced across the nation, O3 is being considered a
‘new-age pollutant’ for tropical countries such as India (Sharma and
Khare, 2017). By constantly violating the prescribed standards
(especially in summers and post-monsoon), O3 has been growing
into a critical urban air quality concern in highly polluted envi-
ronments of Delhi, India (Hazarika et al., 2019; Kumar et al., 2020).
Its chemical precursors: oxides of nitrogen (NOx) and volatile
organic compounds (VOCs) have been in constant dominance
across the region; and are an extensive problem for the last decade
(Jenkin et al., 2017; Lu et al., 2018).

Humanmortality of about 0.25 million in 2015 was attributed to
O3 exposure, especially due to causing chronic lung diseases.
Additionally, about 0.10 million premature deaths every year in
India are linked with O3 exposure; of which, 42% are exclusively
over the Indo-Gangetic plain (Health Effect Institute, State of Global
Air, 2017). Typically, adverse effects of pollution show a consider-
able effect on the economy, owing to its impact on human, animal
and plant health; and these losses, as estimated to be about 7.7% of
the national GDP (Amann et al., 2017; Lin et al., 2012; WHO, 2016).
Continuous and belligerent degradation in the photochemical air
quality specifically over Indian Capital, New Delhi, has raised sig-
nificant attention; and in many instances tagged, Delhi, as one of
the most polluted cities in the world (Mukherjee and Agrawal,
2016).

Long-term exposure to high levels of O3 may cause a serious
decrement in the lung function of children, increase possibilities of
asthma and other breathing issues such as chest pain and coughing
(Ghude et al., 2008). Moreover, regular contact with its precursors
i.e. VOCs can be harmful as it may lead to conjunctival irritations
and other health-related issues (Paoletti et al., 2014). The uptake of
O3 in plants may alter the leaf physiology and reduce growth by
altering phenology, i.e. number and timing of flowers (Ainsworth
et al., 2012). While on the material, direct corrosive effect on
plastics, natural rubber, textiles, paints and surface coating is
observed (Screpanti and De Marco, 2009). Despite increasing
attentiveness on O3 pollution, in both the science and policy com-
munities, the severity of the pollutant can be well-traced by the
findings that, “India has been consistently reported to have one of
the highest numbers of premature deaths due to O3 pollution,
which also adversely affects wheat and soybean crop yields”
(Pozzer et al., 2015; Zheng et al., 2009).

The sources responsible for O3 generation (thermal power sta-
tions, transport and industrial emissions, domestic use of coal and
fossil fuels etc.) have been researched extensively (Ojha et al.,
2016). O3 and its precursors share a complex relationship, owing
to interactions betweenmeteorology and chemical processes over a
2

large spatial scale along with an extended timeline. Several in-
vestigations have been carried out for Delhi (Ghude et al., 2008;
Kumar and Foster, 2009; Sharma et al., 2016; Tiwari et al., 2015) on
O3 and other photochemical pollutants. The studies cumulatively
examined the spatial and temporal distribution of pollutants by
capturing the trends, studied diurnal cycles, analysed for the
response of living species using various models (such as the
exposure-plant response of ambient ozone using Ethylenediurea),
modelled photochemical pollutants and performed sensitivity
analysis etc.

The severity of photochemical air pollution invokes the devel-
opment of observation-based photochemical kinetic models
(PKMs) for O3 that includes its chemical precursors and meteoro-
logical parameters. Formation of such models involve capturing
variation, thus, it is easier to forecast the trends for primary pol-
lutants (NO and NO2) due to their linear nature (i.e. statistical
persistence in NOx), whereas O3 shows anti-persistent behaviour
due to its composite secondary nature (Chelani, 2013). Some
regression studies target NOx (¼NOþNO2) (de Foy et al., 2018) and
Ox (¼ O3þNO2) (Notario et al., 2012; Clapp et al., 2001) to under-
stand the intermittent consumption of O3 and NO2. O3 is a sec-
ondary pollutant and therefore formed through the photochemical
reactions between NOx and VOCs along with CO, through a series of
free radical reactions in the presence of sun light (Shukla et al.,
2018a; Tiwari et al., 2015). Involvement of complex precursors,
radicals and dynamic diurnal pattern makes it difficult to develop
an observation-based model for O3 prediction over any city. These
above-mentioned challenges along with rising photochemical
pollution strengthen the imperative need to develop an
observation-based model linking O3, NOx, VOCs and meteorology
for highly polluted environments like Delhi. The developed model
can be used, either to forecast the pollutant levels or in case of
absence/missing of observations.

This paper follows an approach of a polynomial transformation
of the data followed by linear regression and random forest
regression. Polynomial transformation is usually executed to
introduce non-linearity in the dataset. Both models were aided
with machine learning to reduce their time-intensity when
compared to models built over high-performance computing. The
pre-requisite for such techniques is the presence of continuous
ground observation of precursors and meteorological parameters
for the particular day for which the O3 prediction is to be made. For
this purpose, hourly-averaged pollutant observations and meteo-
rological parameters for 2015e2018 were taken for Delhi, India.

Historically, several studies have been conducted to understand
ground level O3eprecursor relationship with the help of regression-
based analysis (Abdul-Wahab, 2003; Al-Alawi et al., 2008;
Khedairia and Khadir, 2012; €Ozbay et al., 2011). In a similar vein,
many studies have analysed O3 characteristics over Delhi (Ali et al.,
2012; Beig and Ali, 2006; Ganguly, 2009; Jain et al., 2005;
Mahapatra, 2010; Mishra and Goyal, 2016; Pallavi and Chirashree,
2011). These studies explained the seasonal, annual and diurnal
trends of pollutants on supersites of Delhi, India and elsewhere.
However, none of the studies to-date haveworked on forecasting of
photochemical pollutants based on their relationship with
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precursors and meteorological variables. Even the state-of-the-art
published research on the development of regression models on
ground level pollutant observations has significant gaps and has
not been carried out for photochemical pollutants such as O3, NOx
and VOCs. Therefore, there arises a need for the application of
regression models for the above-mentioned scenario. This work is
one of the first studies to investigate the regression models for
explaining the relationship between emerging photochemical
pollutants and meteorological parameters.
2. Methodology

2.1. Study area

The National Capital Territory (NCT) of India covers an area of
approximately 1482 km2

, with more than 11 million people in it
(Census of India, 2011) and its current population is estimated to be
19.5 million (Populationu, 2020). Past few decades have seen rapid
industrial, transportation and real-estate sector growth in the city
which led to accelerated degradation of air quality (Coe et al., 2015).
Delhi has emissions generating from within (vehicular) and trans-
ported from outside (west to east; crop and fossil fuel burning)
(Dumka et al., 2018). This study undertakes 3 supersites* in Delhi
(Fig. 1): (i) Ramakrishna Puram (RKP; 28�33046.1"N, 77�11010.2"E),
situated in South West Delhi, is mainly a residential and institu-
tional colony. It has been referred to as an institutional colony
because there exist various academic and non-academic in-
stitutions (such as embassies, universities, hospitals etc.) nearby.
This site has been selected due to heavy traffic on the adjacent
major roads such as ring road (Shukla et al., 2020; Guttikunda and
Fig. 1. Sites with varying land-use patterns under observation in
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Gurjar, 2012); (ii) Punjabi Bagh (PB; 28�39047.1"N, 77�07025.2"E),
located in West Delhi, is primarily a residential area along with few
industries in Mayapuri and Mangolpuri. The increased vehicular
emissions mainly on the neighbouring Rohtak Road and Ring Road
are the major reasons for the site performing poor in the air quality
index (Shukla et al., 2020); and (iii) Mandir Marg (MM;
28�38002.3"N, 77�12000.8"E), based in Central Delhi, is also pri-
marily a residential location along with few industries situated
nearby. Mandir Marg has one of the busiest routes with high
vehicular emissions (Shukla et al., 2020).

*Supersites include a major area of a city such as colonies, sectors
or wards with a significant proportion of the population living in it
(Solomon and Sioutas, 2008). A supersite can be residential, institu-
tional or industrial, such as Anand Vihar, Punjabi Bagh etc. in case of
Delhi.

Among the three aforementioned sites, two have residential and
industrial land uses while the third has a residential and institu-
tional land use. The ratiocination against this is that, as per the
Delhi Development Authority (DDA, 2020), a major proportion of
Delhi-NCT is residential.

Several studies in the past have considered between 1 and 6
sites to build a city-level pollutant forecast model, with varying
levels of prediction accuracies. Wang et al. (2013) have used a novel
technique, Single Point Areal Estimation (SPA), to extend the
pollutant mass concentrations obtained at a single station to a
citywide scale for Beijing metropolis. Kheirbek et al. (2013) had
adopted hourly O3 data from seven regulatory monitors in/around
the counties of New York City to assess for air quality health im-
pacts and disparities at City level. García et al. (2011) have devel-
oped an O3 prediction model using Artificial Neural Network (ANN)
Delhi, India a) Punjabi Bagh b) Mandir Marg c) RK Puram.



K. Shukla, N. Dadheech, P. Kumar et al. Chemosphere 272 (2021) 129611
as the base framework. They have adopted the data pertaining to
chemical variables from a single station (Miravalle Station; South of
the City) and meteorological parameters from another station
(Chapala station; City Centre) to model O3 in the entire city of
Guadalajara, Mexico. Ruiz-Suarez et al. (1994) and Ruiz-Suarez et al.
(1995) have developed and employed neural network paradigms
(Bidirectional Associative Memory (BAM) and Holographic Asso-
ciative Memory (HAM)) towards short-term forecasting of ozone
for Mexico City, using data from five stations of RAMA (Mexico
City’s automatic air quality monitoring network).

For the combined (indicative of city-level) model, we aggregate
emissions and meteorology of all three Delhi-NCT supersites in one
matrix. In current study, ‘Combined model’ or ‘indicative of city-
level model’ refer to a model that has been developed using ma-
chine learning algorithm while using the collated parametric data
from all hotspots as input (i.e. input to training the algorithm/
model). This collation combines the characteristics of the hotspot
sites and inculcates them into the final developed city-level model.
Since these three stations carry different innate (land-use, topog-
raphy, terrain etc.) and incidental (meteorology and pollutant
emissions) characteristics, it is assumed that combining the data
obtained from the above-mentioned stations would inherently
represent the data corresponding to the entire city, in general. The
applicability of a combined (indicative of city-level) model can be
extremely important in case of unavailability of measurement
stations at any location point in the city. The combined model in
this study gives uses three stations to provide an indicative ambient
ozone concentration which may be assumed as representing Delhi
city. The model would strengthen as we increase the number of
sites.

During the hot summer afternoons, O3 concentrations in many
parts of Delhi are often found to exceed even 200 mg/m3

, against the
8-h average (100 mg/m3) standard provided by the NAAQS (Fig. 2).
Data appertaining to hourly-averaged observations for 4 years
(2015e2018), has been adopted for analysis in polynomial trans-
formation. Statistical analysis of ground monitored ozone and its
precursors (VOCs: Benzene, Toluene; NOx: NO, NO2) at key hotspot
sites in Delhi aforementioned, elucidates the complex photo-
chemistry (Table 1).

This study is based on the generalization of the data, therefore
an indicative city-wide model can be formed since themodel needs
concentration of pollutants andmeteorological parameters as input
to predict the concentration of label class. Hence, after the inclusion
of meteorological parameters, the model becomes generalized at
city-level. However, the performance may be affected due to the
significant difference between the spread of the data in multiple
sites.

Ground observations of pollutant concentrations and data
pertinent to meteorological parameters are taken from an in-
ventory of the Central Pollution Control Board (CPCB), India,
continuous monitoring system. At all the monitoring sites (shown
in Fig. 1), O3 is measured using online ozone analyser (model
O342 M, Environment SA, France), which works on UV absorption
technology (CPCB, 2016); NO2 is measured using Jacob and Hoch-
heiser modified (NaOHeNaAsO2) method and Gas-Phase Chem-
iluminescence; and VOCs are measured using Gas Chromatography
(GC) based continuous analyser, adsorption and desorption fol-
lowed by GC-MS analysis. The observations in the adopted data are
missing for some days due to maintenance work at the monitoring
station or any defect in the measuring instruments.

2.2. Methods for analysis and model building framework

The study uses regression analysis, which has been used in
various areas of research such as boundary integrals (Sladek et al.,
4

2000), time-series auto-regression and evaluation of other exist-
ing transformations like logarithmic and square root projections
(Kumar and Foster, 2009; Pearce et al., 2011; Tao et al., 2012). Linear
and random forest regression technique combined with machine
learning have been used in this paper to perform meteorological
and precursor adjustment, for prediction of O3, NO and NO2
(method chart in Fig. 3).

The model is trained after pre-processing the observations.
Proper quality assurance has been adopted for the dataset through
pre-processing which includes only those data points which
contain the entire information i.e. concentrations or measurements
corresponding to all features. The approach is basically to delete the
entire data point if any of the pollutant concentration is null i.e. not
recorded by the station. Also, it has been observed in the data that
for a period of significant weeks the concentration of major pol-
lutants was recorded zero which could not be the case. Conse-
quently, to assure the quality those data points have also been
deleted. The pre-requisite for the data to train a machine learning-
based regression model is that it should not have missing data.
However, one can perform data imputation i.e. filling missing data
based on an average or a distribution but it cannot be completely
accurate. Therefore, to maintain the complete accuracy of the data,
the deletion operationwas performed. Also, the high concentration
data points were not removed because ozone itself contains several
spikes in its distribution and if these values were removed then
models would not have learnt enough during training as the dis-
tribution function may not be differentiable at every point.

Polynomial transformation provides more flexibility over indi-
vidual distributions of different emissions and meteorology as it
can be safely assumed that most of the distributions can be
expressed through polynomial expressions. It is done through the
introduction of new columns in the data matrix by raising the
polynomial order of the entire data point (row of the data matrix).
This is done to morph the data points into a polynomial curved
shape in a graph of nth dimension (range for this study is from 1st
to 10th) space. It increases the number of features significantly to
establish the relationship between features (precursors) and
labelled data (to be forecasted).

The regression technique (can be linear regression or random
forest regression), that follows polynomial transformation, can
establish a relationship between the labelled data Yi (O3, NO, NO2 in
this case) and features X1, X2, X3……. Xn (¼ known concentrations
of other pollutants including meteorological parameters such as
toluene, benzene, temperature etc.).

Linear regression performed in this study can be well under-
stood using linear optimization theory. Given a dataset D ¼ {(x(i),
y(i))}mi¼1, linear regression optimization condition can be written
as below. Equation (1) (Neal, 2009) provides the optimal hyper-
plane as:

JðwÞ¼ minw;b
1
2m

Xm
i¼1

������wTxðiÞ þ b� tðiÞ
������2 (1)

Here, (w,b) represents the hyper-plane fitting the data. When
J(w) is the error function, m is the total number of reading of the
data used in training, w is the coefficients of the equation, x(i) is the
feature data of ith reading, b is the constant to adjust the noise, y(i)

is the concentration of pollutant to be predicted for ith reading,
wTxðiÞ þ b is Ypredicted and tðiÞis Yactual. J (w) has been used to mini-
mise the error and calculate the coefficients of the regression
equation using the training data. Efforts were put to reduce the
error, which was calculated by comparing Ypredicted and Yactual. The
above condition in case of linear regression gives the following
equation:



Fig. 2. Average diurnal variation of photochemical pollutants at city level and sites level.
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W¼ (XTX)�1(XTY) (2)

Where W is the matrix of coefficients of the equation, X is the
feature data which will be known in future and Y is the known
labelled data which we have to predict in the future, but during
training e initial data will be provided to train the model.

Linear regression has been used d in Athens and Helsinki, for
predicting NOx and PM10 (Vlachogianni et al., 2011); inMorocco, for
evaluating various O3 prediction models (Oufdou et al., 2018); in
Portugal, daily average O3 coupled with principal component
analysis (Sousa et al., 2007); next-day PM10 concentration in
Malaysia (Ul-Saufie et al., 2013). Furthermore, Random forest
regression is used on hourly photochemical pollutants to improve
the predictions. Random forest regressor is a machine learning
5

method for classification and regression, and has multiple decision
trees (Hu et al., 2017). These decision trees are divided based on
each feature after setting up a particular threshold value and this
way, data is divided in different branches of the trees. All the
component trees use a random sample subset from the dataset. For
every individual tree, equal probability induced predictors are
selected. The output is calculated by taking the mean and aggre-
gation of every individual component tree.

Random forest has been researched to perform better than other
linear regression techniques aided with machine learning (Archer
and Kimes, 2008; Hengl et al., 2015; Nicolas et al., 2016). Random
forest regression is proven to produce good predictions for air
pollutants such as PM2.5, NO and NO2 in Poland (Kami�nska, 2018),
monthly PM2.5 in China (Huang et al., 2018), excellent in advancing



Table 1
Average (2015e2018) photochemical pollutant concentrations and meteorological variables.

Pollutant and meteorological e hourly average (2015e2018)

Pollutant Concentration (mg/m3) RKP PB MM

Average ± s Average ± s Average ± s

Ozone 50 ± 58 41 ± 53 32 ± 38
NO 56 ± 122 26 ± 66 28 ± 57
NO2 66 ± 45 66 ± 60 55 ± 38
NOx 140 ± 190 95 ± 134 88 ± 95
Benzene 7 ± 10 3 ± 6 3 ± 3
Toluene 16 ± 13 N/A 11 ± 15

Meteorological Parameter RKP PB MM

Average ± s Average ± s Average ± s

Temperature (oC) 25 ± 8 18 ± 12 24 ± 9
Humidity (% Rh) 53 ± 21 44 ± 26 54 ± 21
Wind Speed (m/s) 1 ± 0 0.9 ± 0.76 1 ± 3
Pressure (hPa) 688 ± 262 768 ± 125 702 ± 76
Solar Radiation (w/m2) 117 ± 144 76 ± 109 114 ± 141

Fig. 3. Model development framework for photochemical pollutants.
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PM2.5 in USA (Liu et al., 2018) and O3 in China (Zhan et al., 2018).
The approach is also beneficial for downscaling meteorological
parameters such as wind (Davy et al., 2010) and temperature
(Hutengs and Vohland, 2016). The random forest model performs
better than linear regression because of its structural algorithms.
Unlike a linear regression model, it can exploit more context from
the feature and increase the training data through its decision trees
and branches (Li et al., 2014). Kami�nska (2018) also concluded that
a random forest model is better than linear regression for mapping
the mathematical reality when predicting dynamically varying
features. Their study also concurs that meteorology is an important
factor for predicting NO and NOx.

The random forest in this study consisted of 10 trees, which is a
hyperparameter given to the model and we have used the default
value of the random-forest python library. The default number
6

comes after much detailed analysis of varying the number of trees
and evaluating the models. Therefore, it has been decided to go
with the default value. Random forest regression also yielded
‘attributed importance’ of different variables in making the pre-
diction. The matrices include variables with their percentage.
Higher percentage denotes that more importance is given to that
variable in determining the prediction (Gregorutti et al., 2017). The
study also formed different combinations of variables for predicting
ground level O3 to understand the role of various variables.

The models were built separately for the data from all three
sites, allowing different aspects of pollutants, and comparison be-
tween ‘with or without meteorology data’ for a specific site to include
local variations. The model is trained after pre-processing the ob-
servations adopted from CPCB pollutant inventory. In this study,
while executing both the models, 90% of the total data adopted
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from the field were randomly selected for model training while the
remaining 10% has been selected randomly andwas used for testing
(validating) the trained model. This ratio was adopted to arrive at
finer prediction and hard training of the model. Upon training and
validating the model for 4-year data (2015e18), the third phase of
model development, i.e. model performance with meteorology, is
assessed for two scenarios d 1-year prediction (against 2018e19)
and 1-month prediction (against January 2019).

The forecasting only depends on the features used i.e. pollutants
concentration and meteorological parameters; and hence, it has no
dependency on the period. It can be used for any duration providing
the features are contained inside its spread. If they cross the vari-
ance then it will be a situation which was not taught to the model
while training.

2.3. Performance indices

The coefficient of correlation (R) and Root Mean Square Error
(RMSE) have been considered to evaluate the performance of the
developed models.

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðYi � Yi Þ2 �
Pn

i¼1ðYi � bYiÞ2Pn
i¼1ðYi � Yi Þ2

vuut (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðYi � bYi Þ2
n

s
(4)

R is a numerical evaluation measure, meaning a statistical
relationship between the actual and predicted values, with scale
starting from 0 (no correlation) to 1 (perfect correlation). RMSE is
used as an evaluation factor in several other air pollutant studies
(Chaloulakou, 2003). After training and testing, RMSE is calculated
for the models corresponding to all the degrees of transformation
to find out the bestmodel (lowest RMSE). The degreewhich had the
lowest RMSE corresponding to it, was noted as the optimum
polynomial degree.

3. Results

Regression models of hourly O3, NO and NO2 were produced
using linear regression and random forest technique under varying
cases of meteorology. Random forest regression improves predic-
tion for photochemical pollutants over linear regression.

3.1. Regression models for ozone

Ground level O3 in Delhi city does not have direct point sources.
Its formation is highly NOx sensitive and less VOC sensitive (Shukla
and Khare, 2019). The overall trend of NOx emissions has been
increasing (rapid increase in NO2), leading to more favourable
conditions for O3 generation in the city (Shukla et al., 2018b).
However, the emerging policies and control on NOx emissions
might lead this zone due to being VOC sensitive in future. It has also
been observed that micro-meteorology has become most impor-
tant in forming/destructing O3 at any point (Jing et al., 2016). To
understand O3 generation, the performance of regression-based
models of all the sites for predicting O3 (using hourly average)
with andwithout meteorology has been evaluated. In the majority of
the cases, the transformed degree of the original dataset into a 2nd
to 4th polynomial degree. The observed order of the performance is
also similar for all the sites i.e. smaller error observed for site-spe-
cific model considering meteorological parameters compared to the
site-specific model without meteorology. O3 in observations exhibits
7

a sharp daytime increase in concentration due to photo-oxidation
of precursor gases (NOx, CO, CH4, NMHC and VOCs). While after
sunset, the loss of O3 is due to its titration by NO and surface
deposition produces low mixing ratios (Coyle et al., 2002).

Preliminarily, a multiple linear regression (MLR) model for daily
averaged data was formulated and tested. This daily averaged
model was not able to capture the diurnal profile changes of
photochemical pollutants for Delhi city. Performance of the models
drastically improved when hourly averaged concentrations of O3
and precursors were used instead of daily averaged data or
maximum daily 8-h average (MDA8) to build a model. The analysis
results into the observation that initially the optimised degree of
transformed training dataset was found to be either 1st or 2nd, but
in the hourly dataset, it shifted to 2nd to 4th. It indicates that the
relationship between ozone and other pollutants is corresponding
to degree 2 or 4 in nature when the observations are carried out
more vertically i.e. hourly. A similar approach of the linear regres-
sion model for O3 has been discussed by Jing et al. (2016) and they
trained their basic linear regression model on pollutants and sea-
sonality as features, which are similar to the feature identification
step of this study. The results obtained from this study are consis-
tent with findings from their study and that meteorology plays a
crucial role in calculating the concentration of ozone. To enhance
the prediction accuracy and assert the effect of seasonal variation,
solar radiation, time and month have also been added to the fea-
tures list. The nature of O3, due to being secondary pollutant and
diurnal, is well captured in a model designed using hourly average
observations. Further, random forest regression has been applied
on hourly O3 observations (Zhong et al., 2017 and Lei et al., 2018).
Markedly, when the random forest is used on hourly O3 concen-
trations for predictions, the impact of NOx emissions and meteo-
rology i.e. hourly changing solar radiation and relative humidity are
embedded better (Tiwari et al., 2015; Gioda et al., 2018). The study
formed 10 trees under random forest regression.

After training, Ground level O3 modelling was tested with
meteorology for city-level through hourly average observations
using linear regression technique showed R2 ¼ 0.45 (r ¼ 0.67,
RMSE ¼ 37.07), and using random forest technique R2 ¼ 0.74
(r ¼ 0.85, RMSE ¼ 25.65) (Table 2). A comparative assessment
involving produced correlation from linear regression and random
forest with a meteorology case is represented by a Taylor diagram
(Fig. 4). A Taylor diagram can show model performance changes
between any 2 modelling approaches e.g. 2 different model’s, their
versions or setups (Taylor, 2001). Clearly, during testing phase, the
random forest with meteorology has achieved excellent correla-
tions (varying from 0.80 to 0.94) and relative standard deviations
for site-specific and indicative city-level model against linear
regression with meteorology (Fig. 5). For instance, during testing,
RK Puram site has achieved ground level O3 predictions with
highest correlation (r) i.e. 0.92 (random forest), against 0.86 (linear
regression).

The features that have been taken to predict and build a model
for ground level O3 are below:

1. Features (with meteorology case): NO, NO2, benzene, toluene,
temperature, humidity, wind speed, pressure, solar ration, time,
month

2. Features (without meteorology case): NO, NO2, benzene,
toluene, time, month
3.2. Importance of different variables in ozone formation

Importance of different predictive variables in forecasting
ground level O3, was determined as a summation of the increment



Table 2
Regression model indices after model testing for Ozone using hourly averages (2015e2018).

Technique Linear Regression Random forest

Area R2 RMSE after polynomial fit Degree min RMSE R2 RMSE after
polynomial fit

Degree min RMSE

with meteorology
Combined (city level Delhi) 0.45 37.07 2 0.74 25.65 1
R.K. Puram 0.75 27.58 3 0.85 21.69 1
Punjabi Bagh 0.51 38.41 3 0.66 31.42 1
Mandir Marg 0.46 25.24 2 0.74 17.54 1
without meteorology
Combined (city level Delhi) 0.29 41.88 3 0.65 29.19 1
R.K. Puram 0.45 41.90 3 0.78 26.47 1
Punjabi Bagh 0.24 47.03 3 0.56 35.59 1
Mandir Marg 0.23 30.22 3 0.68 19.34 1

Fig. 4. Taylor diagram representing hourly ozone predictions using linear regression and random forest regression.
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in re-substituting estimates across all the individual tree nodes
(Breiman, 2001). Importance value is the percentage of the
maximum sum, and its maximum value is 100 for the most
important predictive variable. The importance or say dependence
of O3 calculation on other variables through random forest
regression has been calculated for all 3 sites and indicative city level
(Fig. 6). Among all the variables and for all cases (city-level or site-
specific), the highest dependence on the prediction of ozone con-
centration was observed to be on relative humidity (28e44%). The
next variables that were in the order of dependence are solar ra-
diation, NO2, NO and benzene. It should be noted that NO2 plays a
dominant role while regressing at certain sites in comparison to
solar radiation. These results were in line with the findings of the
model formulated by Abdullah et al. (2019), where relative hu-
midity was found to be one of the significant predictors of O3.
3.3. Regression models for NO and NO2

The major source of NO in an urban atmosphere for that of Delhi
is the burning of fossil fuels, biomass, lightning and microbiological
emission from soil (Singh et al., 2011). A clear rise in the NO (from
8

2015 to 2018) along with the presence of other VOCs is observed,
which can be an attributed cause of increasing ground-level O3 in
the Delhi region (Shukla and Khare, 2019). Historically, NOx emis-
sion has been found to be increasing, and have reached 1,84,000
tons in 2012 from 1,20,500 tons in 2001 (approx. 52.6% rise), due to
fuel and technology conversion from petrol and diesel with 2-stroke
engines to CNG with 4-stroke engines (Goel et al., 2015). The current
status invokes the development of flexible regression basedmodels
to understand formation of NO and NO2.

For NO, testing performance of the models from linear regres-
sion is better in terms of obtained R2 and RMSE than ground level
O3 (Table 3) and it also follows almost the same trend with respect
to the degree of polynomial transformation corresponding to least
RMSE. In case of testing regression on NO (Fig. 7a and c), site spe-
cificmodels are showing better correlation that indicative city-level
regression models, while there is a significant difference between
with and without the meteorological case. Peculiarly, NO regression
models improve (produces lower RMSEs, while R2 is slightly
improved as well) when developed with meteorology. This infers
that NO (label) regression models tested to be the best only when
precursors (like NO2 and various VOCs (features)) are taken (Bisht



Fig. 5. City-level ozone testing results obtained using: linear regression (a) and random forest (e); Site-specific ozone prediction using: linear regression (bed) and random forest
(feh).
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Fig. 6. Importance of various variables (precursors) against ground level O3 using random forest regression.

Table 3
Testing results of linear regression and random forest model for NO and NO2 using hourly averages (2015e2018).

NO Linear Random Forest

Area R2 Optimal RMSE after polynomial
fitting

Degree with minimum
RMSE

R2 Optimal RMSE after polynomial
fitting

Degree with minimum
RMSE

with meteorology
Combined (City-

level)
0.55 62.6 3 0.81 39.9 1

R.K. Puram 0.56 89.6 3 0.83 55.2 1
Punjabi Bagh 0.61 48.2 4 0.80 39.9 1
Mandir Marg 0.63 36.4 2 0.77 28.5 1
without meteorology
Combined (City-

level)
0.40 72.0 3 0.75 46.20 1

R.K. Puram 0.49 98.0 3 0.76 66.55 1
Punjabi Bagh 0.53 53.2 4 0.68 48.52 1
Mandir Marg 0.49 40.9 3 0.74 30.46 1

NO2 Linear Random Forest

Area R2 Optimal RMSE after polynomial
fitting

Degree with minimum
RMSE

R2 Optimal RMSE after polynomial
fitting

Degree with minimum
RMSE

with meteorology
Combined (City-level) 0.50 35.8 2 0.79 23.0 1
R.K. Puram 0.72 25.1 3 0.81 19.8 1
Punjabi Bagh 0.67 36.7 3 0.84 33.1 1
Mandir Marg 0.53 23.4 2 0.77 16.8 1
without meteorology
Combined (City-level) 0.42 38.6 3 0.75 25.49 1
R.K. Puram 0.52 32.9 3 0.75 22.98 1
Punjabi Bagh 0.58 41.3 4 0.65 39.82 1
Mandir Marg 0.37 27.2 2 0.74 18.09 1
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et al., 2015). In contrast to regression on O3, which yields high
dependence on meteorology, both NO and NO2 are not much
affected with meteorological parameters (Tables 2 and 3). The
observed value of R2 is conspicuously high as compared to O3. This
is contributed by the stable nature of NO concentrations in com-
parison with O3. NO does not have any effective seasonal variations
which result in its persistence (Xu et al., 2018). The stable and ac-
curate test results of NO can be credited to the more or less equal
rate of formation and consumption of NO in the atmosphere.

The testing performance of models for all the sites to predict
NO2 (Table 3) is evaluated with a similar methodology. It is clearly
observed that for most of the cases, degree 1 is producing the best
test performance among all other degrees of the original observa-
tions which are transformed into the polynomial data. After ana-
lysing testing results, NO2 models are also found to be best for with
meteorology cases,where not much difference is observed between
10
site-specific and indicative city-level. It is concluded that NO2 has a
very similar pattern as NO, as they are found as a mixture of gas-
phase organic molecules which is represented as NOx (Pusede
et al., 2015). It exhibits similar chemical interference with O3. It
constructs O3 and acts as a vital component of the photochemical
cycle. The photolysis of NO2 (l � 424 nm) leads to formation of
atomic oxygen (O3 P) and NO (5). Here, (O3 P) reacts with atmo-
spheric O2 and forms O3 (6). This leads to a null photochemical
cycle, where O3 now combines with NO to form NO2 (7). In further,
complex sets of reactions, oxidants like HO and HO2 are also
involved in conversion of NO to NO2 (Wang et al., 2017). Photo-
chemical formation of O3, NO and NO2 is interdependent and thus
regression techniques produce a good insight (Figs. 7 and 8).

NO2 /NOþ Oð3PÞ ð� 424 nmÞ (5)



Fig. 7. City-level NO testing results obtained using: linear regression (a) and random regression (e); Site specific NO predictions using: linear regression (bed) and random forest
(feh).
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Fig. 8. City-level NO2 testing results obtained using: linear regression (a) and random regression (e); Site-specific NO2 predictions using: linear regression (bed) and random forest
(feh).

K. Shukla, N. Dadheech, P. Kumar et al. Chemosphere 272 (2021) 129611

12



K. Shukla, N. Dadheech, P. Kumar et al. Chemosphere 272 (2021) 129611
O ð3PÞ þ O2/O3 ðM body as reac tan t and productÞ (6)

O3 þNO ¼ NO2 þ O2 (7)

However, model testing shows that NO2 has slightly less accu-
racy as compared to the NO, and it may be associated with the
formation of nitrate and reactions to form aerosols. The source of
the NO2 emission lies close to the ground such as fossil fuel com-
bustion and biomass burning. NO2 (lifetime < 1 day) varies with
meteorological parameters, photolysis rate and concentration of
hydroxide radicals (Sheel et al., 2010). This variation can also be a
reason for NO performing slightly better in prediction compared to
NO2 (Fig. 8 and Table 3). Also, NO2 is one of the major sources of O3
and hence justifies its association with O3 concentration (Shukla
et al., 2017; Shukla and Khare, 2019; Zheng et al., 2009). It also
exhibits enhanced seasonal variations such as its concentration
decreases during monsoon and increases during summer.

The features that have been taken to predict and build a model
for NO and NO2 are below:

1. Features for NO (with meteorology case): O3, NO2, benzene,
toluene, temperature, humidity, wind speed, pressure, solar
ration, time and month

2. Features for NO (without meteorology case): O3, NO2, benzene,
toluene, time and month

3. Features for NO2 (with meteorology case): O3, NO, benzene,
toluene, temperature, humidity, wind speed, pressure, solar
ration, time and month

4. Features for NO2 (without meteorology case): O3, NO, benzene,
toluene, time and month

The efficient test performance of random forest as compared to
linear regression is associated with consideration of only linear
dependency between labels and features in linear regression.
However, Random forest classifies the data in different branches of
the trees and, hence, brings non-linearity into consideration. It also
works on the concept of decision trees which is related to parti-
tioning the data based on Gini impurity function, ball trees and KD
trees (Bogdan andMozgovoy, 2019; Notario et al., 2012; Laber et al.,
2019).
3.4. Coefficients of the regression equation: O3, NO and NO2

The coefficients for regression equations for prediction of O3, NO
and NO2 along with and without meteorology have been produced
through the linear regression (Equations (1) and (2)). The hourly
average concentration of O3, NO and NO2 for Delhi city can be
computed from the (polynomial degree 1) equations below with
considering the effect of meteorological parameters.

[Hourly O3]combined(indicative city-level)¼0.013[NO] þ 0.003[NO2] e
0.081[B] e 0.079[Tol] þ 0.201[Temp] e 0.870 [RH] þ 0.096
[SR] þ 0.526 [WS] þ 0.074 [P] þ 0.090[T] �0.189 [M] þ19.907 (8)

[Hourly NO]combined(indicative city-level) ¼ 0.046[O3] þ 0.598
[NO2] þ 0.534[B] þ1.251 [Tol] �0.784 [Temp] þ0.948[RH] �1.539
[WS] e 0.063[P]e 0.008[SR] e 0.162[T] e 0.332 [M] �1.099 (9)

[Hourly NO2]combined(indicative city-level) ¼ 0.003[O3] þ 0.173
[NO] þ 0.254[B] þ0.176 [Tol] �0.103 [Temp] e 0.260[RH] e 2.901
[WS] þ0.065[P] �0.059[SR] þ0.963[T] �0.095[M] þ20.935 (10)

*Units and abbreviation: NO (mg/m3), NO2 (mg/m3), NOx (mg/m3),
B: Benzene (mg/m3), Tol: Toluene (mg/m3), Temp: Temperature (�C),
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RH: Relative humidity (%),SR: Solar radiation (W/m2), WS: Wind
speed (m/s), P: Pressure (bar), T: Time (hour) andM:Month (month
unity).

**All the regression equation coefficients with various poly-
nomial degrees for individual sites and indicative city level model
for with and without meteorology have been provided separately
with this paper.

Additionally, analysing the observation versus modelled con-
centrations after testing, it is observed that random forest based O3
models predict best for a range 0e200 mg/m3, while for extremely
higher concentrations (~250e300 mg/m3) the prediction is not ac-
curate and fidelity of the model diminished (Fig. 9a); for NO
(Fig. 9b), most of observations lie between 0 and 400 mg/m3; and for
NO2 (Fig. 9c), most of observations lie between (0e200 mg/m3).
Random forest models satisfactorily even for extremely high con-
centrations of NO and NO2. This ill-performance corresponding to
elevated concentrations of O3 might be because “If the data peak
goes outside the standard deviation then it is basically beyond the
range of the data on which the model was trained, in other words,
these peaks are also known as outliers”. The model cannot predict
well for the outliers because it does not see much of outliers during
the training and does not generalize the parameters (coefficients
and bias) accordingly. As already specified in section 2.2, if the
features cross the variance then it will be a situationwhich was not
taught to the model while training.

The obtained results for O3, NO and NO2 (in the testing phase;
shown in Figs. 5, 7 and 8 and Tables 2 and 3) veritably establishs
that random forest regression has accomplished admirable corre-
lations for site-specific and indicative city-level relative to linear
regression d with and without meteorology. This shows that the
photochemical kinetic model developed using random forest
regression has trained better; and hence, best-suited for predicting
future concentrations.

3.5. Model performance: forecasting O3, NO and NO2

In order to access model’s accuracy, the third phase of model
development i.e. model performance (or forecast) has been per-
formed for two scenarios. Upon training (development) and testing
(validating) the model for 4-year data (2015e18), 1-year prediction
(against 2018e19) and 1-month prediction (against January 2019)
were executed. The predictions were performed for 4 degrees of
polynomial transformation and the degree which had the highest
R2 value (when compared against 2019 observed field data) has
been reported as the best forecast.

At combined city level, ozone and NO predictions were found to
be better forecasted for one future month (i.e. January 2019;
R2 ¼ 0.91 for O3; R2 ¼ 0.70 for NO) than for full year (i.e. 2019;
R2 ¼ 0.65 for O3; R2 ¼ 0.34 for NO). Contrasting pattern were
observed for NO2 prediction, as it primarly emitted from fossil fuel
combustion in Delhi and is less likely dependent on seasonality.
Ideally, when indicative city-level model is considered, the January
2019 results (1-month predictions) should be better compared to
the annual results (2019) but it is not the case with NO2 and it could
be because of high standard deviation of themoving average of NO2
concentration in the area. Fig. 10 presents a time series comparision
(predicted vs observed) for O3, NO and NO2 at the combined city-
level for two forecast scenarios (January 2019 and Annual 2019).
At site-level, RK Puram had better O3 prediction for January 2019
while Punjabi bagh showed best forecast for 2019 full-year
(Table 4). This observation has been reversed in case of NO pre-
diction. For NO2 predictions, among site-level forecasts, RK Puram
showed the highest R2 for both the scenarios (1-month and 1-year).

Ozone predictions at Mandir marg were observed to the worst
possible (for January 2019; R2 ¼ 0.02). The major reason for the



Fig. 9. Polar diagram representing testing performance for random forest modelled versus observed concentrations of (a) O3, (b) NO, and (c) NO2.
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poor performance on the January month compared to the entire
year might be because “most of O3 measurements during January
month for the selected input duration (2015e18) was missing at
Mandir Marg site”. This, accompanied with the usage of ‘month’ as
a feature for model training, led to a case where the machine
learning algorithm did not learn much for the January month. Also,
the January field measurements were missed significantly for 2015
in the training and testing data at Punjabi bagh and RK Puram but
there existed consistent data for the next input years (2016, 2017
and 2018). Therefore, site-specific and combined models could
learn effectively in these cases.
4. Summary and discussions

We developed and trained two observation-based flexible
photochemical kinetic models (linear and random forest regression
models) and compared it with testing data, to assess model accu-
racy. Among the developed models, random forest regression was
used to project pollutant concentrations for two scenarios. The
training was carried using data adopted from three supersites of
Delhi-NCT, where O3 levels constantly violate the prescribed stan-
dards. These algorithms follow an approach of a polynomial
transformation of the data (which introduces non-linearity into the
dataset) before the application of regression techniques. Both the
models were aided with machine learning (to reduce their time-
intensity) and were applied to two scales (Site- and indicative
city-level).

C In most pollutant-modelling scenarios, site-specific models
with meteorology generally perform better compared to a
indicative city-level combined model with or without
meteorology. Nevertheless, there exist some cases where
indicative city-level models were found to better suit and
perform than site-specific models, which can be ascribed to
high variation in the observed pollutant concentrations from
those sites

C While forecasting O3, R2 values were observed to be rela-
tively less because of seasonal variations, on the other hand
NO and NO2 models are found to be quite stable with better
results which accredit to their stability in the atmosphere.
14
Formation of nitrate and aerosols is hinted to be the reason
for the poor performance of NO2 compared to NO.

C Based on testing results, it can deduced that random forest
regression improved O3 modelling over linear regression
with greater acceptability, i.e. correlation of 0.92 for site-
specific (RKP) and 0.85 for indicative city-level; reinforcing
the census that random forest regression is best suited to
evolve models for secondary pollutants.

C NO does not have any effective seasonal variations which
result in its persistence (Xu et al., 2018). The stable and ac-
curate prediction of NO can be credited to the more or less
equal rate of formation and consumption of NO in the at-
mosphere. NO2 may be associated with the formation of ni-
trate and reactions to form aerosols. NO2 (lifetime < 1 day)
varies with meteorological parameters, photolysis rate and
concentration of hydroxide radicals (Sheel et al., 2010). Also,
It exhibits enhanced seasonal variations (such as concen-
tration decrease in monsoon and increase in summer). These
could be the probable reasons for NO forecast performing
slightly better than NO2.

C Collated parametric data from all selected hotspots was used
as input for training the algorithm to develop city-level
combined model. This collation combines the characteris-
tics of the hotspot sites and inculcates them into the final
developed indicative city-level model. And hence, this
particular version of models will only have the features of the
3 chosen sites i.e. predominantly residential characteristics
with a fraction of other land-use attributes.

C As the combined model is based on machine learning (on a
similar note to site-specific models), it is capable of receiving
inputs from any number of sites; making this model
extremely flexible, adaptable and pliant. A large (longer
temporal datasets) and diverse (larger spatial dataset or data
from disparate land-uses) input for training this model re-
sults in increased model performance. It has to be admitted
that for a production-level combined model, which stake-
holders generally use for making judicious decisions, to
predict pollutants across the entire city, one should consider
data (pollutant concentrations and meteorological



Fig. 10. Random forest regression model performance (predicted versus observed): (i) for one month (January 2019); (ii) for one full year (2019).
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parameters) from all possible sites and monitoring stations
from diverse land-uses.

C In general, As 1-month prediction of January 2019 was
observed to better suited forecast relative to full-year pre-
diction for 2019, it can be inferred that random forest
regression should be used for monthly (or shorter) forecasts;
while incorporating incremental learning in due course (to
inculcate seasonality and better train the algorithm).

C As these models are built with focus on flexibility, they can
be replicated for other cities and pollution sites; making
them extremely utilitarian and remarkably effective for
wide-range implementations. Also, these models are simple
and easily understood structures, giving them minimal
operational costs and in comparatively less time.
15
C While performing the polynomial transformation, it has
been observed that only lower degree transformation could
furnish best results. In most cases for Ozone (site-specific
models), 3rd degree polynomial transformation was
observed to be optimal. However, for NO and NO2, both 3rd
and 4th degree polynomial transformation have given the
most accurate results. In general, polynomial transformation
exhibits a comparably smaller error till 3rd or 4th degree,
and then the error increases abruptly as the degree increases.
The minimum error which can be observed below 5th-de-
gree polynomial transformation is comparatively insignifi-
cant compared to the error corresponding to 10th-degree
polynomial transformation. As explained by Bishop (2006),
this sharp increase in error is because of the overfitting of the
model.



Table 4
Performance of random forest regression based model to predict O3, NO, NO2 for two scenarios (1-month prediction and 1-year prediction).

Area Prediction for January 2019 Prediction for 2019 (Full year)

R2 Optimal RMSE after polynomial fitting Degree with maximum R2 R2 Optimal RMSE after polynomial fitting Degree with maximum R2

Ozone
Combined (City-

level)
0.9126 30.5931 4 0.6547 30.7189 3

R.K. Puram 0.8648 34.8630 1 0.4832 32.6531 3
Punjabi Bagh 0.5339 31.0502 3 0.6067 27.9837 2
Mandir Marg 0.0212 23.3120 3 0.3059 13.8197 1
NO
Combined (City-

level)
0.7049 78.4754 2 0.3417 41.9877 2

R.K. Puram 0.3991 116.3283 1 0.4530 111.9550 1
Punjabi Bagh 0.5275 84.0075 1 0.2855 38.8895 1
Mandir Marg 0.6219 58.9812 1 0.5682 33.8293 2
NO2

Combined (City-
level)

0.4028 41.5856 1 0.4404 30.6276 1

R.K. Puram 0.7216 30.1515 1 0.7220 31.6242 1
Punjabi Bagh 0.5657 37.3623 1 0.3818 34.5473 1
Mandir Marg 0.3363 43.8510 3 0.4731 21.9390 1
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C The multiple linear regression-based (MLR) PKM used
against O3 prediction in the current study has obtained
relatively lower R2 compared to the MLR formulated by
Abdullah et al. (2019). Although the coefficients of determi-
nation against O3 forecast were somewhat low, MLR of the
current study is considered reliable and accurate, since the
present model uses 11 input features compared to 8 used by
Abdullah et al. (2019). Even though the random forest
regression employed the present study has performed
marginally better than ‘the MLR model developed by
Abdullah et al. (2019)’ and ‘random forest regression by
Rekha et al. (2018)’ in estimating O3 levels, it performed
poorly in comparison to ‘the Multivariate Adaptive Regres-
sion Splines (MARS) model applied by Rekha et al. (2018)’.
Despite using deep convolutional neural networks (CNN) for
O3 prediction, Eslami et al. (2019) have reported similar
Pearson correlation coefficient (r) when evaluated against
the MLR and random forest regression in the current study.
The performance of the random forest regression, in quan-
tifying O3, was found to be similar against ‘the improved
auto-regressive (AR) method employed by Zhang et al.
(2011)’. Forecasting NO and NO2 with meteorology using
MLR and random forest regression was better performed
compared to the random forest model used by Kami�nska
et al. (2018).
5. Conclusions

Photochemical air pollutants which affect animal and plant
well-being are modelled using a set of the flexible site- and indic-
ative city-wide models. These models (linear regression and
random forest regression; both assisted with machine learning)
were developed to forecast ground level O3, NO and NO2, using the
data obtained from three highly-polluted supersites of Delhi-NCT.
The following conclusions are drawn:

C Integrated meteorological-emission models obtain a better
equation between features and labels. Hence, both the
meteorological observations and emission concentrations
are used in this study. These models can be used for those
areas that do not have comprehensive observations to
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predict the photochemical pollutants while encapsulating
the corresponding meteorology with precursor emissions.

C Pollutants such as O3 are highly sensitive to the seasonality.
Since the data used in training the models include meteo-
rological parameters for all the seasons, these models can
predict the concentration in any given season. Also, the
evaluation was done on testing data, which was generated
randomly from all the possible seasons in a year.

C Employment of random forest regressor found solar radia-
tion, NO2, wind speed and NO to be the most important
parameter for accurate O3 prediction in the heavily polluted
environment of Delhi.

C Through this study, it can be concluded that random forest
models perform reasonably better than linear regression for
predicting the concentration of photochemical pollutants.
Additionally, meteorology plays a very important role in the
prediction of photochemical pollutants, as it is evident from
the comparisons between with and without meteorological
models. These models can be used until the concentration of
feature pollutants and meteorological parameters are within
the variance.

C The obtained results enable this pragmatic approach (ma-
chine learning-assisted regression), not only to forecast short
term ozone levels but also in capturing the ozone trends, and
expanding the scientific understanding of the mechanisms
underlying O3-precursor-meteorology dynamics.

C The same methodology can be used for other cities and
hence these algorithms can play a primary role in building
future forecasting models for the pollutants. Consequently,
through these models we can even predict the concentration
of photochemical pollutants over those areas where we do
not have measurement instruments installed.

C The developed regression-based models, accompanied with
improved spatial and temporal resolution of input data, are
felicitous for the prediction of ozone levels intended either
for early warning systems (EWS) or event detection and deci-
sion support systems (ED-DSS), for maintaining public health
as well as for regional authorities to contrive strategies/pol-
icies in ameliorating the air quality.

C Current study is more inclined towards the development of a
workable model instead of immediate production to real
world implementations. Therefore, only prominent hotspot
supersites across Delhi (that are infamous for their
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consistently high pollution) were chosen and majority of
work/emphasis is placed on punctilious development of the
model.
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